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Abstract

Many parallel information processing systems have been

proposed which are loosely based on the architecture of the

nervous system. Many of the testable predictions of these systems

fall in the realm of cognitive science since they perform some

#computations' well and some poorly and have pronounced

'psychologies'. In such system, simple elements are connected to

each other; the elements act like 'neurons' in that they sum

excitation and inhibition from other elements. Information is

represented as large state vectors of element activities, and it

can be shown that simple 'synaptic' learning rules can serve to

associate arbitrary state vectors using a matrix of connections.

One version of this class of models has been shown in the past to

form concepts and to perform classification computations. This

paper discusses the general importance and structure of

psychological concepts and describes three simulations of a simple

neural model that attempts to reproduce a few of the important

properties of human concept formation.

S-.,,. .......-............ ....... ..
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Psychological Concepts in a Parallel System

Parallel systems composed of very many interconnected

elements are both simple brain models and possible novel computer

architectures. Potential advantages of such systems, as is well

known, are massive parallelism with resulting speedup of

computation as well as general ability to compute with noisy,

corrupted, or missing data. Parallel, distributed, associative

models have pronounced psychologies. Some ways of handling

information are natural for them, and some things that we might

want them to do are unnatural and quite difficult to do easily.

Since these models virtually all-had their beginnings as 'brain'

models, a question of considerable interest is whether their

capabilities are features of human psychology. We know a great

deal about some of the ways humans combine and use information,

often in considerable quantitative and qualitative detail.

Human Concepts. Many of the systems discussed at this

conference have been designed to perform some sort of intelligent

behavior. However, few of them have been specifically designed to

simulate human behavior. In this chapter, we will present a

parallel memory model of neuron-like elements that shows many of

the behaviors characteristic of the human conceptual system.

People form concepts that correspond to categories of objects in

their world, and this is one of the most important methods of

knowledge representation that they have. Simulating human

concepts in a dynamic memory model would be a significant advance

in understandina how people form new concepts and would also

demonstrate the usefulness of such models in generating

intellia en hehavior. I
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It takes only a moment's thought about concepts to understand

why someone would say that the topic of concept formation is

"about the most fundamental problem of cognitive psychology"

(Jackendoff, 1983, p. 87). In fact, without concepts, memory

would be nearly useless: although we might remember specific

experiences, we would have no means of generalizing our

experiences to new situations. For example, it is our concept of

robin that tells us that a new object we see is a harmless animal

that will chirp and eat worms. Our concept of tiger tells us not

to stick our hands through the bars at the zoo--even though we've

never seen this particular animal before. Smith and Medin (1981)

go so far as to say that "without concepts, mental life would be

chaotic" (p. 1).

Concepts, then, are of great importance to many intelligent

behaviors: memory, pattern recognition, problem solving and

understanding among them. It is not surprising that they have

become a central issue of cognitive psychology. Psychologists

investigate how people learn concepts, how they are represented in

-the mind, how they are used to categorize the world, and how they

are used to answer questions and solve problems. Although the

human conceptual system is by no means the only way to represent

knowledge, any system that captures its properties will be well on

the way to intelligent behavior. The remainder of this chapter

will be devoted to illustrating how a parallel memory model can

capture some of the main properties of the human conceptual

system.
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At a general level, it is easy to explain what a concept is:

a concept is a mental representation or rule that picks out a

class of objects or events. However, this description may lead to

an oversimplifed notion of what concepts are like. Specifically,

one might have the idea that a concept is like a definition, that

it gives the criteria by which all and only the members of the

concepts are identified. However, one important fact about human

concepts is that they are fuzzy. They do not provide all-or-none

criteria for defining classes of objects: in many cases, there

probably are no such criteria, and when the criteria do exist,

people often do not know what they are.

The fuzziness of concepts has two specific components.

First, it includes the phenomenon of unclear examples--objects

which do not fall clearly into or out of some category. For

example, a tomato is not clearly either a fruit or a vegetable.

Most people have experienced socially embarrassing unclear cases

such as ashtray-bowls and there are more puzzling cases in the

sciences,'in which arguments about the correct categorization of

an unclear example may carry on for years. In everyday life, we

often encounter unclear cases simply because we have limited

information about the object or event. But if our concepts were

like definitions, every object would be clearly in or out of a

concept. These unclear cases do not demonstrate a fault of our

concepts but rather the unavoidable variation and uncertainty in

the world.

The second component of fuzziness is graded category

membership, often called typicality. Even among objects that can

definitely be categorized, some objects seem to be "better'
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category members than others: a robin is a better bird than a

chicken is; a trout is a better fish than an eel is. People's

judgments of how typical objects are of some concept are highly

predictable, and typical objects can be classified more quickly

and with greater reliability than atypical objects (Rips, Shoben &

Smith, 1973; Rosch, 1975; Rosch & Mervis, 1975).

One way to explain concept fuzziness is to propose that

people learn a prototype -- the most typical example -- in order

to learn the concept. People's prototype of bird is a small,

*' flying animal with wings that eats worms and builds a nest.

Fuzziness results from the continuous gradation of similarity of

objects to the prototype. For example, most robins are similar to

this prototype but most penguins are dissimilar to it, explaining

why people are faster at identifying robins as birds. Rosch

*" (1978) and Smith and Medin (1981) provide good reviews of such

* theories. However, many models of concepts in cognitive science

seem to ignore both unclear examples and typicality structure (see

Cohen & Murphy, 1984).

Another important aspect of human concepts is their

hierarchical structure. Concepts seem to be organized in a nested

fashion: robin-bird-animal-living thing or rocking

chair-chair-furniture-artifact, for example. This structure

allows people to economically represent information about

increasingly general categories (Collins & Quillian, 1969). So,

the facts people know about birds apply to robins, larks, crows,

etc., and the facts people know about animals apply to birds,

mammals, reptiles, etc. These hierarchies allow us to draw

inferences about objects. For example, if Tweety is a bird, we

2 ,, . .- 22-"- , . .. . .. . . . . . . . ,, . .', .



AnQerson & Murphy, uLfcepL!

can deduce that Tweety is an animal. Such inferences are

important, because we can now infer properties true of all animals

to be true of Tweety as well. This system is economical in that

information about all animals is not repeated with each animal,

but is stored as true about the animal concept in general.

Exactly how people represent such hierarchies is still a matter of

contention in psychology (see Smith, 1978), but it is clear that

these hierarchies are important means of organizing concepts and

storing information.

This review should suggest the challenge faced by any model

of concepts. It should be able to operate in an ambiguous world,

which may contain objects that do not fit into any category

clearly. It should reflect the typicality structure of concepts:

some members should be 'better' examples of the concept than

others. The model should also represent the hierarchical

relations among concepts; it should be able to make inferences

about the attributes of objects, given their category membership.

The next 4ection outlines a parallel memory model and demonstrates

how these goals can begin to be met.

Stimulus Coding and Representation. We have billions of

neurons in our cerebral cortex. The cortex is a layered two

dimensional system which is divided up into a moderate number of

subregions. The subregions project to other subregions over

pathways which are physically parallel. Much, perhaps most, of

the computational power of the brain is in the details of the

neural codes, i.e. the biologically determined representation of

the stimulus. Possibly the brain is not very smart. It does

little clever computation but powerful, brute force operations on
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information that has been so highly processed that little needs to

be done to it. However the pre-processing is so good, and the

numbers of elements so large that the system becomes very powerful

as a result.

Our fundamental modelling assumption is that information is

carried by the pattern or set of activities of many neurons in a

group of neurons. This set of activities carries the meaning of

whateer the nervous system is doing. We represent these sets of

activities as state vectors. Percepts, or mental activity of any

kind, are similar if their state vectors are similar. Our basic

approach is to consider the state vectors as the primitive

entities and see how state vectors can lawfully interact, grow and

decay. The component values in the state vectors might correspond

to the activities of moderately selective neurons. Other possible

neurobiological candidates for elements are cortical columns or

* small groups of neurons. The computational behavior of the models

is indifferent to the exact anatomical attribution of the

elements, though they generally seem more analogous to single

neurons Lhan cortical columns, which may contain tens of thousands

of neurons. Many working in the field prefer to call the basic

units, the components of the state vectors, 'elements' or some

other non-committal term to avoid unnecessary controversy. Our

feeling is that the elements are related in some direct way to low

level structures in the brain, with the exact details currently

unclear.

For reviews of such models see a book edited by Hinton and

Anderson (1981) and two books by Kohonen (1977, 1984). A recent

paper by McClelland and Rumelhart (198, discus3es at length
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distributed memories and representation of knowledge from an

approach similar to ours. They present a number of computer

simulations of systems related and complementary to the

simulations we present here.

The Linear Associator. Abstractly, a synapse connects two

neurons together, so the activity of the presynaptic neuron

affects the activity of the post-synaptic neuron. Most

neuroscientists believe that changes in the strengths of synapses

are the physical locus of memory. It is easy to show that a

'generalized' synapse (i.e., connection between elements) of the

kind first suqgested by Donald Hebb in 1949. and called a 'Hebb

synapse', realizes an associative syscem. Suppose that we have

two sets of neurons, one projecting to the other, connected by a

matrix of synaptic weights A, and that we wish to associate two

activity patterns (state vectors) f and g. We assume A is

composed of a set of modifiable 'synapses' or connection

strengths.

We make two quantitative assumptions. First, the neuron acts

to a first approximation like a linear summer of its inputs. That

is, the ith neuron in the second set of neurons will display

activity g(i) when a pattern f is presented to the first set of

neurons according to the rule,

g(i) E A(i,j) f(j).

where A(i,j) are the connections between the ith neuron in the

second set of neurons and the jth neuron in the first set. He can

write a as the simple matrix multiplication

g A f.
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Our second fundamental assumption involves the construction
of the matrix A, with elements A(i,J). We assume that these

matrix elements (connectivities) are modifiable according to the

generalized Hebb rule, that is, the change in an element of A,

6A(i,j), is given by

SA(i,J) - f(J) g(i).

Suppose initially A is all zeros, that is the system knows

nothing. If we have a column input state vector f, and response

vector g, we can write the matrix A as

T
A = gf

where n is a learning constant. Suppose after A is formed,

vector f is input to the system. A pattern g' will be generated

as the output to the system according to the simple matrix

multiplication rule discussed before. This output, g', can be

computed as

g'= A f,

g.

We have generated a vector in the same direction as g; the system

has learned an association.

Linear Concept Formation Let us make the reasonable but

powerful coding assumption that the activity patterns representing

similar stimuli are themselves similar, that is, their state

vectors are correlated. This means the inner product between two

similar patterns is large. Now consider the case described above

where the model has made the association f - g. With an input

pattern f' then

(output pattern) = g [f,f']

If f and f' are not similar, their inner product [f, f'] is small.
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If f is similar to f' then the inner product will be large. The

model responds to input patterns based on similarity to f. This

rule is therefore related to the theory that categorization is

based on similarity to a prototype. Knapp and Anderson, (1984)

presented an application of this simple approach to psychological

concept formation, specifically the learning of 'concepts' based

on patterns of random dots.

Consider a situation in which a category contains many

similar items. Here, a set of similar activity patterns

(representing the category members) becomes associated with the

same response, for example, the category name. It is convenient

to discuss such a set of vectors with respect to their mean. Let

us assume the mean is taken over all potential members of the

category. Specifically consider a set of correlated vectors, [f),

with mean p. Each individual vector in the set can be written as

the sum of the mean vector and an additional noise vector, d,

representing the deviation from the mean, that is,

f =p+d
i

If there are n different patterns learned and all are

associated with the same response, the final connectivity matrix

will be

n T
A=Egf

i=l

T n
ngp +Ed

A= i
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Suppose that the term containing the sum of the noise vector

is relatively small, as could happen if the system learned many

randomly chosen members of the category (so the d's cancel on the

average and their sum is small) and/or if d is not large. In that

case, the connectivity matrix is approximated by

T
A=ngp.

The system behaves as if it had repeatedly learned only one

pattern, p, essentially the n times the mean of the set of vectors

it was exposed to. Under these conditions, the simple association

model extracts a the prototype just like a signal averaging

program. In this respect the distributed memory model behaves

like a psychological 'prototype' model, because the most powerful

response will be to the pattern p, which it may never have seen.

However if the sum of the d's is not relatively small, as

might happen if the system only sees a few patterns from the set

and/or if d is large, the response of the model will depend on the

similarities between the novel input and each of the learned

patterns, that is, the system behaves like a psychological

'exemplar' model.

We can also begin to see how the system can use partial

"" information to reason 'cooperatively'. Suppose we have a simple

memory formed which has associated an input fl with two outputs,

gi and g2, and an input f2 with two outputs g2 and g3 so that

Afi = gl + gz and

Afz = g2 + g3.

Suppose we then present fi and f2 together. Then, we have

A(fi + fz) = gi + 2g2 + g3,

with the largest weight for the common association. This

4. - .," -, - ."." .". - - ' ",. .-.-.-.- -. ° .: . '-,'- ?:,-- - ,< '"' - v - -
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consequence of superposition has let us pick out the common

association of fl and f2, if we can supress the spurious

responses.

The cooperative effects described in several contexts above

depend critically on the linearity of the memory since things 'add

up' in memory. We will demonstrate below, in Simulation One, that

it is easy to remove the extra responses due to superposition and

generate the exact, noise-free output response with a non-linear

categorization algorithm.

Dot Prototypes. Knapp and Anderson (1984) applied this model

to the formation of simple 'concepts' composed of nine randomly

placed dots. These stimuli were used in a classic experiment on

concept formation by Posner and Keele (1968, 1970). Many variants

of the initial experiments have been performed, with many

different kinds of stimuli, but the general pattern of results is

consistent. For a complete literature review, see Knapp and

Anderson (1984) and McClelland and Rumelhart (1985).

The generic prototype experiment is quite straightforward.

Described in terms of the Posner & Keele stimulus set, the

experimenter starts with the generation of several (usually three

or four) patterns of dots, randomly placed on a computer screen.

These initial patterns are called 'prototypes'. Then distortions

of the prototypes are generated by the experimenter, for example

movina the individual dots in a random direction by a given

amount. In the jargon, these distortions are called 'exemplars.'

If the distance moved is small, the exemplars are visually similar

to the prototypes; if the distance moved is large, an exemplar may

appear to be a completely new pattern.
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The experiment is divided into two parts, a learning phase

and a testing phase. During the learning phase, subjects are

presented with examplars. They are taught (usually with feedback

after a response) to group all the exemplars derived from a

particular prototype with the same response. Subjects are

required to reach a criterion number of correct responses or are

given a fixed number of learning trials. During the testing

phase, subjects are presented with stimuli and told to decide

which category a stimulus belongs in. There are three kinds of

- test stimuli: first, the old exemplars, second, new examplars

generated by the same rules as the old ones, and, third, the

prototype itself.

Experimental results vary, depending on details of the

stimuli and task manipulations. However, in many cases and for

many kinds of stimuli, experimental results show that the fastest

response, the fewest errors in classification, and the strongest

subjective certainty of correctness are found when the prototype

is presented, which, of course, was never actually seen during the

learning phase. Sometimes there is an advantage for the old

examplars and sometimes old and new exemplars are apparently

indistinguishable, depending on details of the experiment.

The model presented in Knapp and Anderson for these results

is a straightforward realization of the linear model presented

-" above. The coding of the state vectors was the key assumption for

the model. It was assumed that there was a sensory surface with a

topographic represention of visual space on it, inspired by the

many such topographic maps in visual cortex. A dot in the world

gives rise to a 'bump' of activity with exponential falloff on the
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surface. Nine dots (the traditonal experimental number) gave rise

to a pattern on the surface of nine bumps, arranged as the

stimulus was in the world.

Since all the exemplars derived from a given prototype are

associated together, outer products of stimulus and response are

stored in the memory matrix, A, during the learning phase. Since

we know the codings of the stimuli, we therefore know part of the

outer product. The responses are somewhat arbitrary, since we do

not know how the responses are represented, but the selectivity of

the system (what we are observing experimentally) is primarily

determined by the inputs, as long as the output patterns are

equivalent in terms of the model (i.e., equal length, equal

separation between the responses, etc.)

Since this is a linear model, the output will generally be a

superposition of the learned responses, but the biggest response

will be that associated with the appropriate prototype. The

amplitude of the associated response will be a measure of response

time, certainty, etc., and that was used in fitting the data in

the paper. In general this simple model gave a good account of

itself in fitting a set of experimental data.

However, the associated response was never actually

generated, merely a quantity related to its size, and the actual

output was always, potentially, a sum of responses and not a

single, clean, output. We claimed earlier that we could develop a

system to 'clean up' an output with noise, or an output which was

a superposition of responses, and below we present a simple system

to do this, which is, of necessity, non-linear. In the section

below entitled, Linear Prototyp!es Revisited, we show the
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operation of such a system applied to a prototype experiment.

Error Correction and the BSB Model. For many applications

the linear model is too noisy. Given a learned association f

g, and many other associations learned in the same matrix, theIpattern generated when f is presented to the system may not be

close enough to g to be satisfactory. By using an error

correcting technique related to the Widrow-Hoff procedure we can

force the system to give us correct associations. (This technique

is referred to as the 'delta' method in McClelland and Rumelhart,

1985, because it is learing the difference between desired and

actual output.) Suppose information is represented by vectors

. associated by fl - gi, f2 - gz ... We wish to form a matrix

*' A of connections between elements to accurately reconstruct the

association. First, a vector, f, is selected at random. Then the

matrix, A, is incremented according to the rule

T
AA = n (g - Af) f

where AA is the change in the matrix A and where the learning

coefficient, n, is chosen so as to maintain stability. The

learning coefficient can either be 'tapered' so as to approach

zero when many vectors are learned, or it can be constant, which

builds in an interesting 'short term memory' because recent events

will be recalled more accurately than past events. As long as the

number of vectors is small, this procedure is fast and converges

in the sense that after a period of learning,

Af = g.

..................-. ***.. -........

.P' * - .. . . . . . . . . . . * *...'* -
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If f = g, the association of a vector with itself is referred

to by Kohonen as an 'autoassociative' system. Suppose we are

interested in looking at autoassociative systems,

T
aA=nf f

ii

where n is some constant.

Let us consider the simple case where only one state vector

is stored. We can then see how feedback can reconstruct a missing

part of an input state vector. To show this, suppose we have a

normalized state vector f, which is composed of two parts, say f'

and f'', i.e. f = f' + f''. Suppose V and f'' are orthogonal.

One way to accomplish this would be to have f' and f'' be

subvectors that occupy different sets of elements -- say f' is

non-zero only for elements Cl..n] and f'' is non-zero only for

elements [(n+l)..DimensionalityJ.

Then consider a matrix A storing only the single

autoassociation of f that is

T
A = (f' + f'') (f' + f''),

(Let us take = 1). The matrix is now formed. Suppose at some

future time a truncated version of f, say V is presented at the

input to the system. The output is then given by

(output) = A f'

= (f, + f'') Cf,, f'].

The rest of the state vector has been reconstructed. Thus, the

model is able to fill in missing information, perhaps as people

are able to do when they identify objects based on partial

information.
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If we combine error correction with autoassociation, we want

the system to behave after learning a set of stimuli (ff as

Af= f
i i

Therefore, one way to view the autoasociative system combined with

error correction is that it is forcing the system to develop a

particular set of eigenvectors. The system is then noisier and

more complex, but the reconstructive abilities remain.

How could we use such a system? Assume that we want to get

associated information that we currently do not have, or we want

to make 'reasonable' generalizations about a new situation based

*. on past experience. We must have some information to start with.

The starting information is represented by a vector constructed

according to rules used to form the original vectors, except

missing information is represented by zeros. Intuitively, the

memory, that is the other learned information, is represented in

the cross connections between vector elements and the initial

informatiQn is the key to get it out. The retrieval strategy will

be to repeatedly pass the information through the matrix A and to

reconstruct the missing information using the cross connections.

Since the state vector may grow in size without bound, we limit

the elements of the vector to some maximum and minimum value.

We will use the following nonlinear algorithm. Let f(i) be

. the current state vector of the system. f(O) is the initial

vector. Then, let f(i+l), the next state vector be given by

f(i+l) = LIMIT C ( A f(i) + y f(i) + & f(O) ).

The first term (a A f(i) ) passes the current state through the

matrix and adds more information reconstructed from cross

connections. The second term y f(i) causes the current state to
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decay slightly. This term has the qualitative effect of causing

errors to eventually decay to zero as long as y is less than 1.

The third term, 6 f(O) can keep the initial information

constantly present. Sometimes 6 is zero and sometimes 6 is

non-zero depending on the requirements of the task. If 6 = 1,

this is sometimes referred to as 'clamping' in the Boltzmann

machine literature.

Once the element values for f(i+l) are calculated, the

element values are 'limited'. This means that element values

cannot be greater than an upper bound or lower than a lower bound.

This process contains the state vector within a set of limits, and

we have called this model the 'brain state in a box' or BSB model.

Because the system is in a positive feedback loop but is

limited, eventually the system will become stable and will not

change. This may occur when all the elements are saturated or

when a few are still not saturated. This final state will be the

output of the system. The final state can be interpreted

according to the rules used to generate the stimuli. This state

will contain the directed conclusions of the information system.

It will have filled in missing information, or suggested

information based on what it has learned in the past, using the

cross connections represented in the matrix. The dynamics of this

system are closely related to the 'power' method of eigenvector

exctraction.

We have showed in the past (Anderson, Silverstein, Ritz, and

Jones, 1977) that in the simple case where the matrix is fully

connected (symmetric by the learning rule in the autoassociative

system) and has no decay, that the vector will monotonically

. .. . .. .- .. .. .. V
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VI
lengthen. We would like to point out that the dynamics of this

system are nearly identical to those used by Hopfield (1984) for

continuous valued systems. It is one member of the class of

functions he discusses, and can be shown to be minimizing an

energy function. In the more general autoassociative case, where

the matrix is not symmetric because of limited connectivity (i.e.,

some elements are identically zero) and/or there is decay, the

system can be shown computationally to be minimizing a quadratic

energy function (Golden, 1985). In the simulations to be

described, the Widrow-Hoff technique is used to 'learn the

corners' of the system, thereby ensuring that the local energy

'minima' and the associated responses will coincide.

In the language most favored in the Los Alamos conference in

May, 1985, such a system becomes 'a dynamical system with

attractors'. The location of the attractors in state space can be

controlled by the learning algorithm.

General Description of Simulations. In the specific examples

of state vector generation that we will use for the simulations to

follow, letters, words and sets of words are coded as

concatenations of the bytes in their ASCII representation. A

parity bit is present. Zeros are replaced with minus ones. For

example, an 's', ASCII 115, is represented by -1 1 1 1 -1 -1 1 1

in the state vector. A 200 dimensional vector would represent 25

alphanumeric characters. This is a 'distributed' coding because a

single letter or word is determined by a pattern of many elements.

It is rather arbitrary but it gives useful demonstrations of the

power of the overall approach and lets internal structure of a

stimulus be seen clearly. In the outputs from the simulations the
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underline, '_', corresponds to all zeros (for the input state

vector) or to an uninterpretable character whose amplitude is

below an interpretation threshold (for later iterations). That

is, the output strings displayed are only those characters of

which the system is 'very sure' because their actual element

values were all above a high threshold. The threshold is only for

our convenience in interpreting outputs; the full values are used

in the computations.

All the BSB simulations below are 200 dimensional (25

characters). The autoassociative matrix is usually 50% connected,

that is, about half the elements, randomly chosen, are set

identically to zero. This could be interpreted as one neuron not

speaking to another because they are not connected. During

learning, items to be associated are chosen randomly from the

stimulus set. Generally, for the sizes of simulation described

below about 20-30 presentations, on the average, of each f-g pair

is adequate to give essentially perfect learning, that is the

cosine of the angle between the actual and desired output vectors

is greater than 0.99.

In all the applications of the BSB model described here, the

inputs are 'clamped', that is, 6 = 1. Simulations were done both

with inputs clamped and unclamped and there was no significant

difference in results, except for small changes in number of

iterations required for saturation.

Simulation One: Linear Prototypes, Revisited. The claim was

made that we could use a simple non-linearity to make the final

output state vector consist of a single response, rather than a

superposition of several responses. The paper analyzing the dot

,°- -. *° - -. .".o.. . .". .-.. . . . . . . . . . .. . .- ° . ° .- °- °- ,° .- ..:. . . . . .-.-.-.-. ".. . . . ,. .. °° ° . ,h" .
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pattern experiments (Knapp & Anderson, 1984) used only the linear

model, and used what could be construed as a non-linear decision

process to chose the best response.

With the BSB model, we can see if the non-linear system will

work the same qualitative way as the linear system, i.e. whether

it will show prototype effects, even though only a single response

is generated as the output. In the simulations to be described,

responses were virtually always correct. To make contact with the

data, it is necessary to find some kiid of parameter that

corresponds to a quantitity that can be measured experimentally in

human subjects.

The most obvious parameter is what migi' be called 'reaction

time'. It is the number of matrix iterations required to meet

some criterion: all elements at a limit, say, or all elements

above an interpretation threshold. This is a measure of

processing time. There is a huge psychological literature on

reaction .times, with many careful studies and a number of

consistent results. We have used reaction time in both the linear

and non linear models as a response measure in previous

applications of the neural model to experimental data (Anderson,

1973; Anderson et. al., 1977). It would be expecting too much to

ask for immediate quantitative agreement with data, but we should

expect to see a number of qualitative effects that we can check

fairly easily. Examples would be the consistent tradeoff between

speed and accuracy, and the general result that the surer the

system is of a response (i.e., if the response is consistent with

a great deal of stored information) the faster is the response.

(Anderson, in press)
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We should expect that the prototype should therefore show the

fastest 'reaction time' in the simulations, as well as in the

experimental data. In the dot pattern experiments this is found,

and is a general qualititive feature of the experimental

literature.

Rather than using dot patterns, which would have required

forbidding amounts of computer time, we used a small, 200

dimensional system using alphanumeric characters. Table 1 gives

the stimulus sets that were learned and Table 2 gives the test

stimuli used to test the resulting matrices. The rules for

construction of the stimuli are straightforward: there are four

'prototypes': lists of five mammals, fish, grains, or trees.

Exemplars are constructed by replacing the names of two of the

members of the list with dashes, '-', that is, no learned exemplar

contained all the information in the prototype. Replacing one

character with another one ensured the vectors were always of

constant length. New exemplars were constructed by replacing

different sets of characters by dashes. The prototypes, the

unmodified lists, were not presented during the learning phase.

Table 1 about here

Table 2 about here

- ---
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This system used two matrices: specifically, a matrix was

constructed using the linear system to associate the inputs (the

f's) and the outputs (the g's). The outputs (the g's) were then

learned by an autoassociative system using Widrow-Hoff error

correction. A test vector, say ti, was presented and an output

*. vector, say oi was generated by

ol = A ti

The output then served as the input to the non-linear BSB model.

Number of iterations required for the output vector to fully

limit are plotted for various test stimuli in Table 3. It can be

seen that the results of the simulations are a good replication of

the basic pattern of experimental results found in a number of

experiments. Prototypes are responded to fastest, though they

were never presented during learning. There was also a slight

advantage for old examples. The system made rare mistakes. The

simulation presented here made none. Reaction times to mistakes

were long, over 100 iterations. Clearly the same effects are

demonstrable in the nonlinear model as in the linear one, with the

attractive feature that this is now a general classification

algorithm (it actually constructs the correct response) with some

psychological support.

Table 3 about here

In a large simulation, using thij technique, we claim we

could have reconstructed the pattern of results in the

Posner-Keele experiments from the intial stimulus coding to the

firing pattern of the motor outpu' . The attractive feature of
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doing the simulation this way would be that in a simple learning

system we would have driven some theoretical muscles to push the

appropriate pseudo-button and as a side effect have reproduced the

observed pattern of experimental results.

Simulation Two: Common Associations. A major theoretical

problem in psychology, and a major practical problem in Artificial

Intelligence, one particularly pronounced in language behavior, is

disambiguating ambiguous stimuli. Alan Kawamoto's recent Ph.D.

thesis (1985) discussed this problem, and presented a system which

was capable of performing simple disambiguation of word like

stimuli using a number of techniques including adapatation.

Adaptation was also applied to a number of classic 'multi-stable'

stimuli such as the Necker cube with some qualitative agreement

with experimental data. (Kawamoto and Anderson, 1985). The

adapting system worked, but was fairly sensitive to parameters.

Although adaptation is undoubtedly necessary in a general system,

it is possible to do robust disambiguation in some situations

without using adaptation. An example of this important effect is

demonstrated in Simulation Two. The input stimulus set is given

in Table 4.

Table 4 about here

The particular problem is one that was suggested as a key

problem of Artificial Intelligence by Eugene Charniak. If one

says to a resident of North America, 'bat', 'ball', and 'diamond',

everyone knows quickly that we are talking about baseball. (This

has been tested in many lectures with the expected results.) The

_. * ., , - " - ..-. ._ -,." ' .'. . .-. .. .... .. " . . ... ' .... ". ,. ,. . ,-.... . - . -. , "
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baseball association is only one possible association of each of

these ambiguous words, yet we were able to pick out the common

association quickly. If we give more information (i.e., it is a

game) reaction time drops. Hints help. Yet, if we were doing

some kind of combinatorial tree search, the more information we

have, the more possible permutations of association combinations

would have to be explored. In this case hints probably help for

increased accuracy, but certainly must hurt reaction time.

We set up a simple simulation to illustrate how effective the

distributed models are for disambiguation. The stimuli are

autoassociated using the Widrow-Hoff procedure in a matrix with

50% connectivity. Note that in the nine stimuli that 'Game',

'Bat', 'Ball' and 'Diamd' are triply redundant: that is, each is

used by three different possible stimuli. If a test stimulus such

as 'Ball' is used, there are three possible final states

containing 'Ball', each equally 'correct' since no more

information was given. Which one is actually chosen by the

simulation is somewhat random, and depends on the short-term

history of the learning and on the structure of the particular

connections used.

In two runs of Simulation Two, when 'Bat' was the test input,

the output was 'Vampire' (f[2)), 'Ball' gave rise to 'Tennis'

(fC51) and 'Diamd' gave rise to 'GeoShape', f[7). (The other ten

simulations that are not described here had one or the other test

stimulus give rise to 'Baseball', which did not make the desired

point.) The average number of iterations for complete saturation

of the single inputs was 98.5 iterations. The input and output

vectors for various conditions are given in Table 5.

. .. '', '.'' ".'' ". ';,. " ". " *". '*' " " " " " " . " * " . ..
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Table 5 about here

If a test stimulus composed of two items, i.e. 'Bat' and

'Ball' or 'Bat' and 'Myth' the appropriate answer was chosen,

'Baseball' or 'Vampire' respectively, even though each word

separately gave a different output. The average number of

iterations for such an input was 38.33. If triples were used, the

average number of iterations was 20.25 and if all four ambiguous

items were used as the input, only 14 iterations were required.

Clearly, in this case additional information helped and greatly

decreased 'reaction time.'

The point of this simulation is that ambiguity is no problem

for this system and disambiguation by context takes place in a

rapid and natural way. A 'concept' such as baseball can be formed

from pieces with multiple meanings and with predictable reaction

time patterns for information retrieval.

Simulation Three: Learning a Concept Hierarchy. Up to this

point, we have been teaching the model concepts at one level of

abstraction. However, as discussed earlier, people do not only

divide the world up this way--they also use concepts at different

levels of abstraction, from very specific to very general. Often,

these concepts are arranged hierarchically.

As a first attempt to see if the model will learn

hierarchically organized concepts, we taught it the set of stimuli

shown in Table 6. These items could be divided into tools and

vehicles at the highest level, but these two groups were further
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divided into more specific categories: saw, hammer, screwdriver,

drill, wrench, pliers, car, plane, train. Finally, each of these

consisted of one or more specific examples, e.g., the hammer

consisted of a claw hammer, rubber hammer, and ball-peen hammer.

The main question we had about this set of stimuli was whether the

model could learn it at all. Each item could be classified in a

number of ways, and it was unclear whether the model would be able

to deal with this ambiguity.

Table 6 about here

The hierarchical organization was represented in two

different ways. First, the fact that all the cars had the string

'Car ' in them was the primary clue that they were all in the same

class. Second, the more general categories were represented as

separate items. For example, the item:

J DrilShopToolMaksThngs' represents the fact that drills are

tools and that they're used in the shop to make things (the spaces

at the beginning of the item indicate that this is a "generic"

drill rather than a specific one, like a Drill Press). Would the

model be able to handle both types of information without becoming

confused?

The details of the simulation were similar to those described

previously. This is a 200 dimensional, 50% connected

autoassociative system. The system learned about 1500 total

random presentations, about 50 presentations per item. The system

learned accurately. During retrieval, inputs were clamped, i.e.

the initial stimulus was added to the state vector after every
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iteration.

After the learning phase, we tested the categorization

ability of the model with a number of different items. Overall,

we found that it was able to make both specific and generic

inferences at appropriate times, and that it was able to recover

items using incomplete information. First, when given a category

name (e.g., 'Hamr', 'ScrD', 'Plne'), it produced information about

items in that category. Table 7 gives a several examples of

response to simple probes. For example, it was able to say that

hammers are held in the hand, hit things, have a head and a handle

and are used to hit metal. The first three attributes are true of

all hammers but the last is true of two out of the three hammer

exemplars. This behavior, outputting the most frequent attribute,

is typical. When asked about cars, it found that cars have

wheels, there are four of them (both true of all cars) and also

that they ride on the street and are common (true of 2/3 cars).

Thus, the model is able to extract the typical features of the

category in this situation. Often the system could not give a

specific example of a hammer or saw, say, but would instead give

no interpretable or nonsense characters in the first four

positions in the state vector. In cases where only one or two

examples of a category had been presented (screwdrivers or

wrenches) it did produce a specific name. (See the section,

Retrieval Techniques, below for further discussion of this point.)

The model will abstract a general concept about many similar items

but will remember a small set of dissimilar items as 'specific

examples', just as we would predict from the prototype

experiments, discussed earlier.
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Table 7 about here

A second test of the model is to give it a feature and see if

it can recover the appropriate category. It is often better at

this task, because the features are more distinctive than the

category names. When given the feature "Rails," the model

recovers the information that the item is a train with many

' wheels, run by Amtrak with a Diesel engine.

Some temporal patterns for retrieval seem to emerge from the

data. The data in Table 7 are arranged so that the first

correctly interpreted appearance of each feature is listed. So,

when 'Saw' is the input, then the specific saw features (Teeth and

Cuts) emerge rather early and the name of a specific saw type

never occurs. When 'Teeth' is an input, 'Cuts' appears quite

quickly, followed after a long interval by other information.

4When both 'Saw' and 'Teeth' are input together, 'Cuts' follows

after only 10 iterations. Note that all simple tools inputs have

'Hand' emerge more quickly than any other feature. This seems to

be because 80% of the state vectors at the level of specific

examples contain the string 'Hand.' However, the system could

retrieve power tools (e.g., 'BandSaw ') if that was specifically

probed. Note that 'Powr' is the last feature retrieved for

'BandSaw

The simulations show a number of errors. These errors were

revealing of the conceptual structure created by the model. For

example, the model did not learn the Drill category well. When

presented with the name 'Dril', it generated the incorrect
'4
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features 'Cuts', 'Teeth', and 'Metl.' The first two features are

properties of the Saw category and the last is a property of two

hammers and a saw exemplar. One might have expected that any

errors would be simply random: if the model didn't learn the

category, then it should generate features nonsystematically.

Clearly, this did not happen. Instead, the model classified the

drills with the other tools; when it becomes confused about the

answer, it responds with features from the same superordinate

category. Furthermore, the error shows a typical pattern similar

* to the 'family resemblance' structure of human concepts (Rosch &

Mervis, 1975), in that the most frequent features are the ones

that the model outputs. When it is unsure about a tool, it

produces features like 'Cuts' and 'Metl' that are found in many

tools. The simulations produced a number of examples like this

one--all in the tool category, presumably because it was larger

.* and its items overlapped more than the vehicle category. We

discuss error correction techniques in the next section.

Finally, we should ask how the model did in learning the

explicit superordinate categories, tool and vehicle. When the

model was presented with "generic items" (those with the spaces in

front of the category name--see example 8 in Table 7), it

correctly chose generic information, that the object was a tool

and made things or that it was a vehicle used for transportation.

Furthermore, the model would recover generic information when

presented with generic features. So, when told that an object was

used in the shop, it could identify it as a tool used to make

things.
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Perhaps these abilities are not surprising. After all, the

model was explicitly taught the exemplars and generic concepts, so

it could well be expected to be able to recover them when given

partial information. But a more difficult task was to provide the

model with a mixture of generic and specific information, for

example, to tell it that something was used in the shop (a generic

tool feature) and had jaws (a feature of the pliers exemplar). In

this case, the model was able to identify the object as a pliers

and add the features of being used to hold things. These cases

are important in showing that the specific and generic information

are not being learned as unrelated facts. Clearly, the model

. "knows" that the information about pliers in general is related to

the information about particular kinds of pliers. In short, the

model has represented a hierarchically structured set of

information, even though it does not use the network formalism

common to most hierarchical models of knowledge representation

(e.g., Collins & Quillian, 1969; Fahlman, 1979). Because the

generic information about the vehicles and tools consists of

different features than are stored in the specific items

(following the principle of cognitive economy), it is possible for

. the model to keep the two kinds of information separate. Yet,

because they involve the same concept names, it is also possible

for the model to connect them up when necessary.

Although this stimulus set is idealized in a number of ways,

it is a first step towards developing a memory model that can

represent what Rosch (1978) called the "horizontal" and "vertical"

dimensions of concepts at the same time. That is, the model does

well in abstracting the properties of all saws or all cars, in

spite of the differences among the individual items. And the

S..............................
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model also does well in representing the relations between

concepts at different levels of abstraction: ball-peen hammer to

hammer to tool. In future work, we hope to extend the model so

that it will discover the hierarchical relations on its own. In

the case presented here, we have told it the properties of tools

and vehicles and quite explicitly grouped together the members of

each superordinate category (through the "generic" items).

However, people can discover the relations between categories at

different levels of abstraction (Murphy and Smith, 1982), and it

is our goal to show that the model can do it as well, given the

proper learning set.

Retrieval Techniques. A significant number of errors were

made in Simulation 3, because many of the stimuli were very

similar and because of their complex internal structure.

Sometimes part of the state vector could not be reconstructed at

all, after hundreds of iterations. For example, the the erroneous

or incomplete outputs given in Table 8 did not change no matter

how many additonal iterations were used. They had obviously hit

an undesirable equilibrium. In terms of the Boltzmann model

literature, we might say that they were trapped in a local minimum

of the energy function which was not the desired global minimum.

One way to get out of the local minimum, one used effectively

in the Boltzmann approach, is deliberately to add noise to the

system. We have used this technique in the past and it does not

seem to work well in this system. Small amounts of noise do not

work at all, and large amounts introduce uncontrollable errors as

well as operate very slowly. Noise is also foreign to our

deterministic approach.
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Are there techniques we can use that will significantly

increase our chance of getting correct answers? In particular,

are their techniques that can be applied mechanically and which

will operate quickly if an error is detected? All but one of the

stimuli learned in Simulation Three contain no zeros. Desirable

final output states will be fully saturated. Therefore, one

practical way of detecting errors is to assume an error exists if

a stable state is generated which is not fully saturated. Another

way would be to assume a simple dictionary containing allowable

sub-groupings of letters -- 'words'. If a stable nonsense word

appears, then an error exists. For example, 'Fasn' gives rise to

the stable state 'StztScrDHandFasnPtipScrew', and the first four

letters are not an allowable string.

Given an error that the system has detected, how can it be

rectified? There are several simple techniques that appear to be

quite effective. Consider the rather large number of obvious

errors seen in the outputs listed in Table 7. Suppose when the

system gets stuck -- i.e., in a stable state that contains an

error, we reset to zero the element values of the word that has

the problem. Notice that the errors are almost always confined to

at most one or two 'words'. Table 8 shows the use of this

technique to correct most of the errors in Table 7 as well as some

additonal tests. A few errors remain: there are two confusions

of 'Saw' and 'Dril' which cannot be removed. Apparently the

definitions of these two tools are sufficiently confused by the

system that it never gets them fully correct.

Table 8 about here

. . . .. . . . . . . . . . . ...--
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The use of short-term decay to correct minor errors also can

be seen in Part 3 of Table 8, where upper case letters were used

in the input in place of the correct lower case letters. When the

input was not clamped (i.e., 6 = 0 in the algorithm) the system

corrected the mistake. When the input was clamped, it could not

change. There was, in general, no obvious advantage for clamping,

though 'reaction times' were usually slightly less in the clamped

system.

There is scope for a good deal of creativity in the retrieval

process that does not necessarily involve the use of deliberately

added noise. The advantage of simple deterministic techniques

such as the ones used here are that they are fast, can be made

automatic, and seem to be straightforward and predictable in

operation. A collectien of effective retrieval techniques can

significantly add to the power of distributed models.

-
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Table 1

Simulation One

Prototype Effects in the BSB Model

Learned Associations

Input State Vector Output State Vector

F" 1. ----------- BearsDogs Cats GE 13. LivingAnimalMammalHunter
FE 23. Lions ---------- Dogs Cats GC 2). LivingAnimalMammalHunter
FE 3). LionsTiger---------- Cats GE 3]. LivingAnimalMammalHunter
FE 4J. LionsTigerBears ---------- GE 43. LivingAnimalMammalHunter
FE 53. - ----- TigerBearsDogs ----- GE 53. LivingAnimalMammalHunter
FE 6].- ----------PerchCbassTuna GE 6). LivingAnimalFishesEdible
FE 7). Trout ---------- CbassTuna GC 73. LivingAnimalFishesEdible
FE 8). TroutSalmn ----------Tuna GE 83. LivingAnimalFishesEdible
FC 9). TroutSalmnPerch ----------- GC 93. LivingAnimalFishesEdible
F0]. ------ SalmnPerchCbass------ GE103. LivingAnimalFishesEdible
F1.13 ----------- Barly0ats Rice GCll). LivingPlantsGrainsEdible
F[123. Wheat ----------Oats Rice GCI23. LivingPlantsGrainsEdible
F[133. WheatRye ----------Rice GE133. LivingPlantsGrainsEdible
F14). hearRye Barly ---------- G[143. LivingPlantsGrainsEdible
F115. ------ Rye Barly~ats GE153. LivingPlantsGrainsEdible
FC163. ----------- PoplrCheryApple G[163. LivingPlantsTrees Boards
FE17). Oak ---------- CheryApple G[173. LivingPlantsTrees Boards
F118J. Oak Pine ---------- Apple G[183. LivingPlantsTrees Boards
F[19). Oak Pine Poplr---------- G[193. LivingPlantsTrees Boards
F203. ------ Pine PoplrChery ------ G[20. LivingPlantsTrees Boards

-.. 2

o-4
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4'Tabl1e 2

Simulation One

Test Stimuli Used in Prototype Simulation

Old Examples

TE 13.- ---------- BearsDogs Cats T[ll3.- ---------- Barly~ats Rice
TE 2). Lions ---------- Dogs Cats T1123. Wheat ---------- Oats Rice
TE 3). LionsTiger ---------- Cats TEl3J. WheatRye------------ Rice
TE 43. LionsTigerBears ------------ T114]. WhearRye Barly ----------
TE 53.------ TigerBearsDogs--------TE15J.- ----- Rye Early~ats------
TE 63.- ---------- PerchCbassTuna TE16J.- ---------- PoplrCheryApple
TE 7). Trout ---------- CbassTuna TCl73. Oak-----------CheryApple
TE 8). TroutSalmn ---------- Tuna TE183. Oak Pine----------- Apple

*TE 9). TroutSalmnPerch ------------ T119). Oak Pine Poplr ----------
TClO).- ----- SalmnPerchCbass ------- T[203.- ----- Pine PoplrChery -----

New Examples

*T[21J. --ons--ger--ars--gs --ts T[311. --eat--e --rly--ts --ce
TE223. L--nsT--erB--rsD--s C--s T132J. W--atR-- B--lyO--s R--e

-T1231. Li--sTi--rBe--sDo-- Ca-- TC33]. Kh--tRy-- Ba--yOa-- Ri--
*T124). Lio--Tig--Bea--Dog--Cat-- TC34]. Khe--Rye--Bar--Oat--Ric--
*T[25]. -ion--ige--ear--ogs--ats TI:35). -hea--ye --arl--ats--ice-

T126). --out--lmn--rch--ass--na T[361. --k --nie --plr--ery--ple
-T[27). T--utS--mnP--chC--ssT--a TE37]. 0-- P--e P--lrC--ryA--le

T[28]. Tr--tSa--nPe--hCb--sTu-- T[38]. Oa-- Pi-- Po--rCh--yAp--e
TC29J. Tro--Sal--Per--Cba--Tun-- TC39). Oak--Pin--Pop--Che--App--

*T[30). -rou--alm--erc--bas--una- T[401. -ak --ine--opl--her--ppl-

Prototypes

dMammals Grains

*TC4l). LionsTigerBearsDogs Cats T[43). WheatRye Barly~ats Rice

Fish Trees

-T1423. TroutSalmnPerchCbassTuna TC44J. Oak Pine PoplrCheryApple



Page 42
Anderson & Murphy, Concepts

Table 3

Simulation One

Summary of a Typical Simulation: Iterations to Saturation

1. Category: Mammals Prototype: 30
Old Examples: 48.0
New Examples: 57.8

2. Category: Fish Prototype: 24
Old Examples: 34.8
New Examples: 33.2

3. Category: Grains Prototype: 23
Old Examples: 27.8
New Examples: 26.8

4. Category: Trees Prototype: 23
Old Examples: 41.6
New Examples: 47.8

5. Overall Average Prototype: 25.0
Old Examples: 38.1
New Examples: 41.4

The number gives the number of iteration required for full
saturation, i.e. for every vector element to be at a positive or
negative limit. Other measures, for example, number of iterations
for all letters to be unambiguously interpreted, showed the same
pattern.

.
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Table 4

Simulation Two

Learned Associations

Input Stimuli Output Stimuli

FE 1]. BasebaliGameBat BallDiamd GE 1J. BasebaliGameBat BallDiamd
FE 2). Vampire MythBat NiteDracu GE 2). Vampire MythBat NiteDracu
FE 3). Animal LiveBat WingFlyng GE 3). Animal LiveBat WingFlyng
FE 43. Poker GameBeerTablCards GE 4). Poker GameBeerTabiCards
FE 5). Tennis GameCortBallRackt CC 5). Tennis GameCortBallflackt
FE 6). Dancing RichPrtyBallSocty GE 6). Dancing RichPrtyBallSocty
FE 7). GeoShapeTwoDCrclSqreDiamd GE 73. GeoShapeTwoDCrclSqreDiamd
FE 8). GeoModelTreDSphrBallTetra GE 8). GeoModelTreDSphrBallTetra

*FE 9). E-xpJewelRichRuby~palDiamd GE 9). E-xpJewelRichRuby~palDiamd

*Note: This is an autoassociative system so the input and output
are identical.
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Table 5

Simulation Two

Test Inputs and Associated Output Vectors

1. Single Ambiguous Words

Number
of

Input Fully Limited Output Iterations

Bat _ Vampire MythBat NiteDracu 81
Ball - Tennis GameCortBallRackt 105

Diamd - GeoShapeTwoDCrclSqreDiamd 134
Game__ Poker GameBeerTablCards 68

2. Pairs of Ambiguous Words

Bat Ball - BaseballGameBat BallDiamd 30
Bat Diamd - BaseballGameBat BallDiamd 28

BallDiamd - BaseballGameBat BallDiamd 27
Game Ball - Tennis GameCortBallRackt 91
GameBat_ - BaseballGameBat BallDiamd 28

Geo Diamd - GeoShapeTwoDCrclSqreDiamd 22

3. Pairs of Words

Bat Nite_ Vampire MythBat NiteDracu 23
Bat Wing_ - Animal LiveBat WingFlyng 25

Shape Diamd - GeoShapeTwoDCrclSqreDiamd 22

4. Triples of Ambiguous Words

Bat BallDiamd - BaseballGameBat BallDiamd 18
GameBat Diamd - BaseballGameBat BallDiamd 18
GameBat Ball_ _ BaseballGameBat BallDiamd 25

5. Quadruple of Ambiguous Words

GameBat BallDiamd - BaseballGameBat BallDiamd 14

4.

4.
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Table 6.

Simulation Three

Autoassociative Stimulus Set

Input Stimuli

FE 1). Rip Saw PowrCuts~oodTeeth F1171. HamrHomeToolMaksmhngs
FE 2). BandSaw PowrCutsAll Teeth F1183. ScrDHomeToolMaksmhngs
FE 33. HandSaw HandCutsWoodTeeth F1193. DrilShopToolMaksThnqs
FE 4). CopgSaw HandCutsWoodTeeth F1203 DrilHomeToolMaksmhngs
FE 5). HackSaw HandCutsMetlTeeth FE2l). Wreril-omeToolMaksmhngs
FE 6). ClawHamrHandHitsWoodHd-{nd F1223. PlirHomeToolMaksThngs
FE 7]. RubrHamrHandHitsMetlHd-nd FE23). SprtCar FourWhlsComnStret
FE 8J. BaPeHamrHandHitsMetlHdHnd FE24]. FamiCar FourWhlsComnStret
FE 9). PhlpScrDHandFasnXtipScrew F[25J. ClscCar Four~hlsRareConcr

*F110). StrtScrDHandFasnPtipScrew F1263. Jet PineTwo WingFastAtMo5
*FEll). PresDrilPowrHoleAll Bit FE27J. PropPineTwo WingSlowAtmos

F1123. HandDrilHandHoleAll Bit FE28). DeslTrneManyWhlsAmtkRails
FEl3J. ScktWrenHandFasnBoltSoHid F[291. Car Own VehiclTranspt
F1143. LnNsPlirHandHoldPiecJaws_ F1301. PlneTcktVehiclTranspt

*F1153. Saw ShopToolMaksThngs F1311. TrneTcktVehiclTranspt
*F1161. Saw HomeToolMaksThngs

Note: This is an autoassociative system so the input and output stimuli
are equal.
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Table 7
Simulation Three

Nr of
Input Stimulus Output at Various Stages Iterations

1. __Saw _______- SawHand M T-et_ 43
ab_-Saw HandCutMe__Teeth 66
-ab_-Saw HandCutsMe__-Teeth 67
-abSaw H-andCutsMetlTeeth 96

* 2. __Hamr____ ____- h'_HamrHand M f_ 39
'pHamrHanl-itM d 44

_'pHamrHand~itsMe_Hd-nd 52
B HamrHandHitsMetlHdHnd 86

3. __ScrD________ h__ScrDHandFasnXtip~rew 40
_hyScrDHandFasnXtipScrew 44
PhlpScrDHandFasnXtipScrew 62
PhlpScrDHandFasn.XtipScrew 86

4. __Dril_________ I* cDril-and Me i 42
Pc -cDrill-and~ut_-MetlTth 78
Pc-cDrili-andCutsMetlTeeth 85

5. _ _Wren________ -* pWren-andF-s 1 4
_j WrenHandFasnBgltSo__d 86

SckWrenl-andFasnBoltSoH~d 108
SckWrenHandFasnBoltSoHnd 109
ScktWrenHandFasnBoltSoHid 123

* 6. BandSaw ____ ____ BandSaw __Cuts__1 Te th 50
BandSaw P CutsAll Te-th 53
BandSaw P CutsAll Teeth 55
BandSaw PowrCutsAll Teeth 120

7. ______Cuts -______Cuts Teeth 16
JigSa. H CutsWoodTeeth 49
-igSaw H CutsWoodTeeth 57

8. Saw ________ . Saw _opToolMakThn-s 38
Saw ShopToolMakThngs 43
Saw ShopToolMaksThngs 45

9. ____Shop Jaws_- ~ ___ ShopHold i cJaws_ 15
q ShopHoldPiecJaws_ 22

LnNsShopHoldPiecJaws_ 40
LnNsPlirShopHoldPiecJaws_ 99

10. __Car '________- _ Car 0 KhlsC____ 27
'zdCar No__hlsCo nS ret 63
-zdCar _ou;rhlsComnStret 72
-zdCar FourWhl5ComnStret 74

* 1. ___________Rails .Tq M Wh__AmtkRails 17
T n_MnyWhlsAntkRails 19
-s1TrneM-nyhlsAmtkRails 26
-eslTrneManyWhlsAmtkRails 28
DeslTrneMany~hlsArntkRails 48
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Caption for Table 7

Time evolution of the output is sketched in this table. Each time a

'word' is successfully reconstructed, the output state vector at that

iteration is listed. The number refers to the number of iterations.

"'I
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Table 8

Simulation Three

Retrieval Techniques

1. Successful Corrections

Teeth - _kSaw PowrCuts~oodTeeth 150
O0OOSaw PowrCutsWoodTeeth - Rip Saw PowrCutsWoodTeeth 30

Cuts_ _ Ck-gSaw H CutsWoodTeeth 150
000OSaw CutsoodTeeth - CopgSaw HandCutsWoodTeeth 51

Saw Teeth - ce Saw PowrCutsAll Teeth 150
000OSaw PowrCutsAll Teeth BandSaw PowrCutsAll Teeth 33

_-_Hamr__ B bHamrHandHitsMetlHdHnd 150
. 0000HamrHandHitsMetlHdHnd - BaPeHamrHandHitsMetlHdind 41

Car_ - zdCar FourWhlsComnStret 150
000OCar Four~hlsComnStret - SprtCar Four~hlsComnStret 44

Fasn_ _ StztScrDHandFasnPtipScrew 150
0000ScrDHandFasnPtipScrew - StrtScrDHandFasnPtipScrew 50

2. Unsucessful Corrections

Dril__ c DrilHandCutsMetlTeeth 150
0000DrilHandCutsMetlTeeth . HackDrilHandCutsMetlTeeth 52

Bit - P_e_Saw H HoleAll Bit 150
0000000000000OHoleOOOOBit - HandSaw HandHoleAll Bit 152

3. Correction of Minor Error by Unclamping Input

SAW -# HaSaw HandCutsMetlTeeth 150
OOOSaw HandCutsMetlTeeth - HackSaw HandCutsMetlTeeth 36

The first line gives the input test state vector and its final
state after 150 iterations. These final states were stable, in that
they did not change even after very large numbers of additional
iterations. The elements in the locations that were incorrect were set
equal to zero, indicated by a zero, '0', and iterations continued. The
number refers to the number of additonal iterations required for
complete limiting.
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